资源类型

期刊论文 436

年份

2023 57

2022 37

2021 44

2020 32

2019 24

2018 16

2017 10

2016 22

2015 15

2014 14

2013 13

2012 15

2011 20

2010 14

2009 13

2008 22

2007 23

2006 11

2005 3

2004 3

展开 ︾

关键词

机理 9

双库协同机制 3

机制 3

DX桩 2

Maradbcm算法 2

作用机制 2

动力学 2

医学教育 2

原子力显微镜 2

木质素 2

21世纪海上丝绸之路 1

9 + 2结构 1

ANSYS 1

CO2地下埋存 1

CO2 EOR 1

CO2净排放量 1

CO2封存 1

DX群桩 1

GDP 1

展开 ︾

检索范围:

排序: 展示方式:

A review on the application of nanofluids in enhanced oil recovery

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1165-1197 doi: 10.1007/s11705-021-2120-4

摘要: Enhanced oil recovery (EOR) has been widely used to recover residual oil after the primary or secondary oil recovery processes. Compared to conventional methods, chemical EOR has demonstrated high oil recovery and low operational costs. Nanofluids have received extensive attention owing to their advantages of low cost, high oil recovery, and wide applicability. In recent years, nanofluids have been widely used in EOR processes. Moreover, several studies have focused on the role of nanofluids in the nanofluid EOR (N-EOR) process. However, the mechanisms related to N-EOR are unclear, and several of the mechanisms established are chaotic and contradictory. This review was conducted by considering heavy oil molecules/particle/surface micromechanics; nanofluid-assisted EOR methods; multiscale, multiphase pore/core displacement experiments; and multiphase flow fluid-solid coupling simulations. Nanofluids can alter the wettability of minerals (particle/surface micromechanics), oil/water interfacial tension (heavy oil molecules/water micromechanics), and structural disjoining pressure (heavy oil molecules/particle/surface micromechanics). They can also cause viscosity reduction (micromechanics of heavy oil molecules). Nanofoam technology, nanoemulsion technology, and injected fluids were used during the EOR process. The mechanism of N-EOR is based on the nanoparticle adsorption effect. Nanoparticles can be adsorbed on mineral surfaces and alter the wettability of minerals from oil-wet to water-wet conditions. Nanoparticles can also be adsorbed on the oil/water surface, which alters the oil/water interfacial tension, resulting in the formation of emulsions. Asphaltenes are also adsorbed on the surface of nanoparticles, which reduces the asphaltene content in heavy oil, resulting in a decrease in the viscosity of oil, which helps in oil recovery. In previous studies, most researchers only focused on the results, and the nanoparticle adsorption properties have been ignored. This review presents the relationship between the adsorption properties of nanoparticles and the N-EOR mechanisms. The nanofluid behaviour during a multiphase core displacement process is also discussed, and the corresponding simulation is analysed. Finally, potential mechanisms and future directions of N-EOR are proposed. The findings of this study can further the understanding of N-EOR mechanisms from the perspective of heavy oil molecules/particle/surface micromechanics, as well as clarify the role of nanofluids in multiphase core displacement experiments and simulations. This review also presents limitations and bottlenecks, guiding researchers to develop methods to synthesise novel nanoparticles and conduct further research.

关键词: nanofluid     EOR mechanism     nanoparticle adsorption     interface property     internal property    

以净零排放为目标的封存驱动型CO2提高采收率方法 Article

刘月亮, 芮振华

《工程(英文)》 2022年 第18卷 第11期   页码 79-87 doi: 10.1016/j.eng.2022.02.010

摘要: 本研究提出了一种新型的CO2提高采收率(EOR)方法,即封存驱动型CO2提高采收率,其主要目标是通过在油藏中封存尽可能多的CO2来实现CO封存驱动型CO2 EOR方法在提高波及效率方面优于传统的CO2 EOR,尤其是在采油后期更为明显;同时,封存驱动型CO2 EOR比传统的CO2 EOR可更有效地提高原油采收率。此外,通过封存驱动型CO2 EOR封存的CO2量远超采出原油燃烧产生的碳排放总量。

关键词: CO2 EOR     CO2净排放量     二甲醚     封存驱动型CO2 EOR     CO2封存    

Frontier science and challenges on offshore carbon storage

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1680-6

摘要:

● The main direct seal up carbon options and challenges are reviewed.

关键词: Offshore carbon storage     Direct CO2 injection     CO2-CH4 replacement     CO2-EOR     CCS hubs     CO2 transport    

Pore-scale simulation of water/oil displacement in a water-wet channel

Jin Zhao, Guice Yao, Dongsheng Wen

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 803-814 doi: 10.1007/s11705-019-1835-y

摘要: Water/oil flow characteristics in a water-wet capillary were simulated at the pore scale to increase our understanding on immiscible flow and enhanced oil recovery. Volume of fluid method was used to capture the interface between oil and water and a pore-throat connecting structure was established to investigate the effects of viscosity, interfacial tension (IFT) and capillary number ( ). The results show that during a water displacement process, an initial continuous oil phase can be snapped off in the water-wet pore due to the capillary effect. By altering the viscosity of the displacing fluid and the IFT between the wetting and non-wetting phases, the snapped-off phenomenon can be eliminated or reduced during the displacement. A stable displacement can be obtained under high number conditions. Different displacement effects can be obtained at the same number due to its significant influence on the flow state, i.e., snapped-off flow, transient flow and stable flow, and ultralow IFT alone would not ensure a very high recovery rate due to the fingering flow occurrence. A flow chart relating flow states and the corresponding oil recovery factor is established.

关键词: VOF     pore scale     immiscible displacement     EOR     snap-off     Ca    

温室气体提高采收率的资源化利用及地下埋存

沈平平,江怀友

《中国工程科学》 2009年 第11卷 第5期   页码 54-59

摘要:

全球气候变化是人类迄今面临的既重大又复杂的环境问题,由于温室气体大量排放而引起的全球气候变暖问题日趋严峻,正在严重地威胁着人类赖以生存的环境,国际社会必须采取积极有效措施。2006年中国国家科技部批准国家“九七三”项目——温室气体提高石油采收率的资源化利用及地下埋存研究。建立适合中国国情的CO2高效利用和埋存体系;实现CO2减排的社会效益和CO2高效利用的经济效益;发展适合中国国情的CO2埋存地下理论、多相多组分相态理论、多相多组分非线性渗流理论和CO2捕集与储运理论。通过上述基础研究,形成具有自主知识产权的CO2地质埋存和高效利用的综合技术,使中国CO2安全埋存—高效利用研究处于国际水平。必将为全球资源和环境的高水平、高效益开发和可持续发展提供理论及实践依据。

关键词: 温室气体资源化利用     CO2地下埋存     提高采收率    

Theory and method of mechanism system design

Huijun ZOU, Qinghua LIANG, Qing ZHANG

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 399-411 doi: 10.1007/s11465-010-0116-8

摘要: Conceptual design is the most critical and creative phase of design. Recently, increasing attention has been directed to supporting conceptual-level computer aided creative design and its theories and methodologies. Specifically, for conceptual design of mechanical products, this paper presents a novel function solving model for mechanical product design and highlights the importance of systematic synthesis to achieve creative design. Then it builds a framework as a function-effect-process-action- mechanisms (FEPAM) mapping process, which enables creative design on the basis of conceiving different action schemes. After that, several key points are elaborated including 1) representing and decomposition methods of functions and motion behaviors; 2) action scheme representing method based on network plan techniques; and 3) variation and creation methods based on action scheme transformations.

关键词: mechanism system creative design     process model     function solving model     process action procedure     mechanisms knowledge base     principle of mechanism system composition    

Formation mechanism and modeling of surface waviness in incremental sheet forming

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0679-1

摘要: Improving and controlling surface quality has always been a challenge for incremental sheet forming (ISF), whereas the generation mechanism of waviness surface is still unknown, which impedes the widely application of ISF in the industrial field. In this paper, the formation mechanism and the prediction of waviness are both investigated through experiments, numerical simulation, and theoretical analysis. Based on a verified finite element model, the waviness topography is predicted numerically for the first time, and its generation is attributed to the residual bending deformation through deformation history analysis. For more efficient engineering application, a theoretical model for waviness height is proposed based on the generation mechanism, using a modified strain function considering deformation modes. This work is favorable for the perfection of formation mechanism and control of surface quality in ISF.

关键词: surface waviness     incremental sheet forming     numerical simulation     formation mechanism     deformation history    

Autogenous healing mechanism of cement-based materials

《结构与土木工程前沿(英文)》   页码 948-963 doi: 10.1007/s11709-023-0960-3

摘要: Autogenous self-healing is the innate and fundamental repair capability of cement-based materials for healing cracks. Many researchers have investigated factors that influence autogenous healing. However, systematic research on the autogenous healing mechanism of cement-based materials is lacking. The healing process mainly involves a chemical process, including further hydration of unhydrated cement and carbonation of calcium oxide and calcium hydroxide. Hence, the autogenous healing process is influenced by the material constituents of the cement composite and the ambient environment. In this study, different factors influencing the healing process of cement-based materials were investigated. Scanning electron microscopy and optical microscopy were used to examine the autogenous healing mechanism, and the maximum healing capacity was assessed. Furthermore, detailed theoretical analysis and quantitative detection of autogenous healing were conducted. This study provides a valuable reference for developing an improved healing technique for cement-based composites.

关键词: autogenous healing     cement-based materials     healing mechanism     aggregation effect    

Optimal design of a linkage–cam mechanism-based redundantly actuated parallel manipulator

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 451-467 doi: 10.1007/s11465-021-0634-6

摘要: A redundantly actuated parallel manipulator (RAPM) with mixed translational and rotational degrees of freedom (DOFs) is challenged for its dimensionally homogeneous Jacobian modeling and optimal design of architecture. In this paper, a means to achieve redundant actuation by adding kinematic constraints is introduced, which reduces the DOFs of the end-effector (EE). A generic dimensionally homogeneous Jacobian is developed for this type of RAPMs, which maps the generalized velocities of three points on the EE to the joint velocities. A new optimization algorithm derived from this dimensionally homogeneous Jacobian is proposed for the optimal design of this type of RAPMs. As an example, this paper presents a spatial RAPM involving linkages and cam mechanisms. This RAPM has 4 DOFs and 6 translational actuations. The linkage lengths and the position of the universal joints of the RAPM are optimized based on the dimensionally homogeneous Jacobian.

关键词: redundant actuation     parallel manipulator     linkage–cam mechanism     Jacobian     optimal design    

Cryogenic minimum quantity lubrication machining: from mechanism to application

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 649-697 doi: 10.1007/s11465-021-0654-2

摘要: Cutting fluid plays a cooling–lubrication role in the cutting of metal materials. However, the substantial usage of cutting fluid in traditional flood machining seriously pollutes the environment and threatens the health of workers. Environmental machining technologies, such as dry cutting, minimum quantity lubrication (MQL), and cryogenic cooling technology, have been used as substitute for flood machining. However, the insufficient cooling capacity of MQL with normal-temperature compressed gas and the lack of lubricating performance of cryogenic cooling technology limit their industrial application. The technical bottleneck of mechanical–thermal damage of difficult-to-cut materials in aerospace and other fields can be solved by combining cryogenic medium and MQL. The latest progress of cryogenic minimum quantity lubrication (CMQL) technology is reviewed in this paper, and the key scientific issues in the research achievements of CMQL are clarified. First, the application forms and process characteristics of CMQL devices in turning, milling, and grinding are systematically summarized from traditional settings to innovative design. Second, the cooling–lubrication mechanism of CMQL and its influence mechanism on material hardness, cutting force, tool wear, and workpiece surface quality in cutting are extensively revealed. The effects of CMQL are systematically analyzed based on its mechanism and application form. Results show that the application effect of CMQL is better than that of cryogenic technology or MQL alone. Finally, the prospect, which provides basis and support for engineering application and development of CMQL technology, is introduced considering the limitations of CMQL.

关键词: cryogenic minimum quantity lubrication (CMQL)     cryogenic medium     processing mode     device application     mechanism     application effect    

Review on mechanism and process of surface polishing using lasers

Arun KRISHNAN, Fengzhou FANG

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 299-319 doi: 10.1007/s11465-019-0535-0

摘要: Laser polishing is a technology of smoothening the surface of various materials with highly intense laser beams. When these beams impact on the material surface to be polished, the surface starts to be melted due to the high temperature. The melted material is then relocated from the ‘peaks to valleys’ under the multidirectional action of surface tension. By varying the process parameters such as beam intensity, energy density, spot diameter, and feed rate, different rates of surface roughness can be achieved. High precision polishing of surfaces can be done using laser process. Currently, laser polishing has extended its applications from photonics to molds as well as bio-medical sectors. Conventional polishing techniques have many drawbacks such as less capability of polishing freeform surfaces, environmental pollution, long processing time, and health hazards for the operators. Laser polishing on the other hand eliminates all the mentioned drawbacks and comes as a promising technology that can be relied for smoothening of initial topography of the surfaces irrespective of the complexity of the surface. Majority of the researchers performed laser polishing on materials such as steel, titanium, and its alloys because of its low cost and reliability. This article gives a detailed overview of the laser polishing mechanism by explaining various process parameters briefly to get a better understanding about the entire polishing process. The advantages and applications are also explained clearly to have a good knowledge about the importance of laser polishing in the future.

关键词: laser polishing     surface roughness     process parameters     mechanism    

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 235-240 doi: 10.1007/s11465-011-0122-5

摘要:

To solve many key technical problems during the development of modern instrumentation system integration and provide a new mode and fundamental technical equipment for the research and development (R&D) of modern instrumentation products, based on the concept of an instrumentation flexible developing system (IFDS), this paper discusses the creation and open flexible integration mechanism, perfects the integrated supporting environment and integrated system of the flexible interconnection, and constructs the new flexible integrated system. Based on the operation mechanism of the modern instrumentation developing system and the research and optimization of the rapid integration design method, the paper emphasizes the dynamic integrating method of multiple types of knowledge in a modern instrument R&D system, to effectively utilize the rich integrated resource and achieve rapid integration of the system. Applications show that the new IFDS can improve the integration level and efficiency of R&D of the modern instrumentation system, enforce the reliability of the system, shorten the R&D period, and reduce the development costs.

关键词: modern instrumentation developing     flexible interconnection     flexible integration mechanism     rapid integration system     dynamic integrating method    

Mechanism and characterization of microplastic aging process: A review

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1700-6

摘要:

● Methods for estimating the aging of environmental micro-plastics were highlighted.

关键词: Microplastics     Aging     Degradation     Characterization     Mechanism    

Design of a novel side-mounted leg mechanism with high flexibility for a multi-mission quadruped earth

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0740-0

摘要: Earth rover is a class of emerging wheeled-leg robots for nature exploration. At present, few methods for these robots’ leg design utilize a side-mounted spatial parallel mechanism. Thus, this paper presents a complete design process of a novel 5-degree-of-freedom (5-DOF) hybrid leg mechanism for our quadruped earth rover BJTUBOT. First, a general approach is proposed for constructing the novel leg mechanism. Subsequently, by evaluating the basic locomotion task (LT) of the rover based on screw theory, we determine the desired motion characteristic of the side-mounted leg and carry out its two feasible configurations. With regard to the synthesis method of the parallel mechanism, a family of concise hybrid leg mechanisms using the 6-DOF limbs and an L1F1C limb (which can provide a constraint force and a couple) is designed. In verifying the motion characteristics of this kind of leg, we select a typical (3-UPRU&RRRR)&R mechanism and then analyze its kinematic model, singularities, velocity mapping, workspace, dexterity, statics, and kinetostatic performance. Furthermore, the virtual quadruped rover equipped with this innovative leg mechanism is built. Various basic and specific LTs of the rover are demonstrated by simulation, which indicates that the flexibility of the legs can help the rover achieve multitasking.

关键词: design synthesis     parallel mechanism     hybrid leg mechanism     screw theory     quadruped robot    

The linkage mechanism between urban intelligence and low carbon innovation

Ming LIN

《工程管理前沿(英文)》 2019年 第6卷 第4期   页码 584-586 doi: 10.1007/s42524-019-0076-6

标题 作者 时间 类型 操作

A review on the application of nanofluids in enhanced oil recovery

期刊论文

以净零排放为目标的封存驱动型CO2提高采收率方法

刘月亮, 芮振华

期刊论文

Frontier science and challenges on offshore carbon storage

期刊论文

Pore-scale simulation of water/oil displacement in a water-wet channel

Jin Zhao, Guice Yao, Dongsheng Wen

期刊论文

温室气体提高采收率的资源化利用及地下埋存

沈平平,江怀友

期刊论文

Theory and method of mechanism system design

Huijun ZOU, Qinghua LIANG, Qing ZHANG

期刊论文

Formation mechanism and modeling of surface waviness in incremental sheet forming

期刊论文

Autogenous healing mechanism of cement-based materials

期刊论文

Optimal design of a linkage–cam mechanism-based redundantly actuated parallel manipulator

期刊论文

Cryogenic minimum quantity lubrication machining: from mechanism to application

期刊论文

Review on mechanism and process of surface polishing using lasers

Arun KRISHNAN, Fengzhou FANG

期刊论文

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

期刊论文

Mechanism and characterization of microplastic aging process: A review

期刊论文

Design of a novel side-mounted leg mechanism with high flexibility for a multi-mission quadruped earth

期刊论文

The linkage mechanism between urban intelligence and low carbon innovation

Ming LIN

期刊论文